

Reactor performance, system reliability, instrumentation and control

¹A. Schumm, ²M. Rabung, ¹G. Marque, ³J.J. Hamaleinen ¹EDF, ²Fraunhofer IZFP, ³VTT

Maintenance

"Effective maintenance is essential for safe operation of a nuclear power plant."

"Maintenance of Nuclear Power Plants", IAEA Safety Series No. 50-OG-07, 1990

Maintenance scope

"Effective maintenance is essential for safe operation of a nuclear power plant. It [...] ensures that the level of reliability and effectiveness of all plant structures, systems and components having a bearing on safety remains in accordance with design assumptions and intent."

"Maintenance of Nuclear Power Plants", IAEA Safety Series No. 50-OG-07, 1990

Maintenance

"Effective maintenance is essential for safe operation of a nuclear power plant. It not only ensures that the level of reliability and effectiveness of all plant structures, systems and components having a bearing on safety remains in accordance with design assumptions and intent, but also that the safety status of the plant is not adversely affected after commencement of operation."

"Maintenance of Nuclear Power Plants", IAEA Safety Series No. 50-OG-07, 1990

Outline

- 1. Safety Systems covered
- 2. A quick project portrait
- 3. Scientific challenges
- 4. Industrial Impact, End user implication and academic involvement
- 5. Lessons learnt and follow-up issues

Safety systems covered

Advanced Inspection of Complex Structures

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

NOMAD

- LTO of RPVs
- The reactor pressure vessel (RPV) is the only part of the primary loop which cannot be replaced
- Irradiation induced embrittlement limits the lifetime of the reactor pressure vessel
- => A systematic study of correlation of
 - microstructure
 - Mechanical properties
 - Neutron irradiation conditions (accumulated dose)
 - NDE properties (Ultrasound, micromagnetic and eddy current)
 - Extending the existing database on irradiation impact
 - Evaluate reliability of NDE techniques
 - Assess impact of material heterogeneity

Massively experimental approach

Furato

Horizon 202

ADVISE

- Complex structured materials are common in NPPs: claddings, transition welds, repairs, CASS
- The microstructure of corrosion resistant alloys limits the performance of ultrasonic inspection
- Welds: beam skewing, beam splitting and scattering
- Cast stainless steel: high structural noise

No silver bullet!

- In-situ material characterization techniques
- Fast on-line simulation of ultrasound propagation
- Inspection method optimisation
- Defect evaluation and assisted diagnostics using characterization data
- Optimised transducers
- Signal processing for noise reduction

Increased inspection depth

LTO of NPPs

Eurato

Horizon 202

8

Team CABLES

~1,500 km of electrical cables in a plant: **Complete cable replacement is not economically feasible**

Polymer ingredients impact dramatically polymer properties and ageing

Need for

- Generic accurate predictive models of lifetime
- Generic methods and tools for on-site monitoring of cables
- Carry out accelerated ageing inside a reactor building to identify polymer ageing mechanisms
- Identify the impact of ageing on the behaviour of cables subject to accidental conditions
- Develop a kinetic model for polymer ageing and multiscale models (mechanical, physical, electrical)
- Contribution to standards on cable ageing characterisation and NDT techniques
- Define criteria and deployment protocols for non-destructive tests or micro-sampling techniques used for on-site monitoring
- Provide and promote a numerical tool for cable ageing management and lifetime prediction

Cable ageing ~ polymer layers ageing

LTO of cables/polymers

HARMONICS

- A fact of life: Software cannot be proven to be completely defect-free!
- Focus: I&C systems performing high order safety functions (category A IEC 61226)
- => Systematic and consistent, yet realistic and practical approaches for software assessment
 - Software verification & validation (V&V)
 - Software safety justification
 - Quantitative evaluation of software (related aspects of system) reliability
 - Address software and system lifecycle (40years, 60y with LTO)
 - Demonstrate feasibility of proposed approaches in the field
 - Get regulators involved

SEVENTH FRAMEWORK PROGRAMME

Application Specific Software			
Standard Eler	nentary Functions		
Operating Sys	tem		
Operating System	Application Software		
Plant tran	sient condition		
	Development process		
Reli	ability Operational experience		

Scientific Challenges

зT	eaM 🦾	
* *	* CABLES	

How to formally justify very

high reliability figures for a

"Continually improving safety and realiability of Gen II and III reactores" (Euratom 2016): Obtain a deeper understanding of operation-induced degradation mechanisms

Multi-scale polymer aging model (up to 80 years) for a	Quantify neutron irradiation induced embrittlement	State of the art report to establish challenges in terms of a "snap shot" at the start of the project	given piece of software?
high diversity of polymers	independent of the cladding		Lack of universally accepted approach for the quantitative evaluation of software
Produce realistic (irradiated and thermally aged cladded blocks/) samples through highly accelerated ageing within reactors/reactor buildings		In-situ characterization, predictive weld models, UT models	reliability.
	Highly sensitive and robust ultrasound NDE needed (unaffected by cladding/microstructure)		

Ultimately gain acceptance of regulator (qualification)

Industrial Impact and end user implication

	NOMAD		HARMONICS
Joint symposium/seminar		Training workshop for NPP operators and researchers of developed tool, summer school, symposium	IAEA report "Dependability assessment of Software for Safety I&C Systems at NPPs"
Access to Western and russian (VVER) type reactors			Link with chinese project
Integration into acquisition system	Database	End user workshops to esta stakeł	blish and maintain link with holders
Integration into CIVA software	Delivery of tools for LT	O assessment (ageing)	
Ensure industrial applicability of developments through end-user groups with external advisors			
Provide background for robust national and EU strategies for nuclear reactor safety			
	Collaboration with EPRI	NUGENIA	

Academic involvement

1 PhD student		3 PhD students	2 PhD students
Imperial College London,	Coventry University	University of Bologna	Harbin Engineering University
University of Bristol		ENSAM Paris	(via RAVONSICS co-project)

Academic involvement

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

- Lifetime extension of current Gen II plants to 60 years has become economically viable (increased capital cost, licensing, ...)
- LTO of these plants raises issues (some of which being the motivation for the projects in this presentation)
- For Gen II, NDE has often been designed as an afterthought, instead of being an integral part of the design

15

- Continuous monitoring has demonstrated its added value in other industries as a complement to in-service inspections at programmed intervals.
- Ageing models allow for predictive maintenance (as opposed to scheduled maintenance).
- Inspection-oriented design has to be considered at manufacture and for replacement components.

Reactor Performance, System Reliability, Instrumentation and Control

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019