

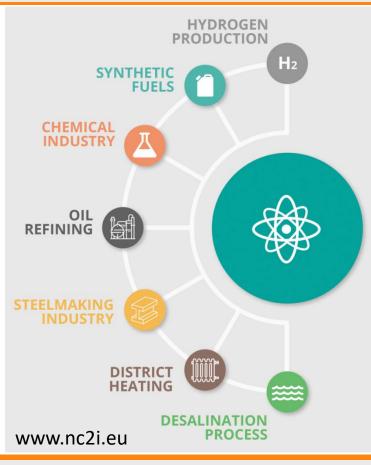
Nuclear Cogeneration with High Temperature Reactors

NC2I-R and GEMINI+ projects www.nc2i.eu www.gemini-initiative.com

Grzegorz Wrochna National Centre for Nuclear Research, Poland

Clean energy challenge - beyond electricity

- Reducing to zero emission from electricity production would solve only 1/6 of the problem
- Industry needs high temperature heat (>500°C)
- Synthetic H-rich fuels for electric cars with fuel cells is the future of transport (>700°C heat needed to produce them)


Tools to be used: SET-Plan, SNETP, NC2I

The European Strategic Energy Technology Plan (SET-Plan) includes several energy technologies.

Each one is covered by corresponding European Technology & Innovation Platform.

Nuclear Cogeneration Industrial Initiative (NC2I) is one of three pillars of Sustainable Nuclear Energy Technology Platform SNETP

initial i

High Temperature Gas-cooled Reactor (HTGR)

TRISO

particle

UO₂/PyC/SiC UCO/PyC/SiC

Compact

TRISO fuel:

- Leak tight to fission products <1600°C
- Pebble-bed or prismatic core

Intrinsic safety:

- In case of accident, cools down by conduction & radiative heat transfer
- No core damage possible, no need for exclusion zone
- Coolant: Helium ~750°C -850°C (experience up to 950°C)
- Flexibility: T°, power, heat/electricity adaptable for industry needs
- Now: steam 550°C for existing industrial installations and cogeneration plants
- ✤ Future: VHTR ~1000°C

Reactor

Block

Core

Reactor

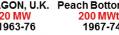
Steam Generators

Primary system (2 loops option)

Circulator

Challenges: deployment, business model, licensing...

HTTR, Japan


30 MWth

since 1998

Test reactors

DRAGON, U.K. Peach Bottom, US 20 MW 1963-76

- 200 MWth 1967-74
 - Industrial prototypes

300 MWe, 1976-89

300 MWe, 1986-89

AVR. Germany

15 MWe

1967-88

.

HTR-10, China

10 MWth

since 2000

HTGR technology well proven by experimental and industrial reactors

- Why HTGR's are not widely used today?
- What are the barriers?
- Who are potential users?
- How big is the market?
- What business model should be used?
- How to license HTGR?
- What is the optimal deployment path?

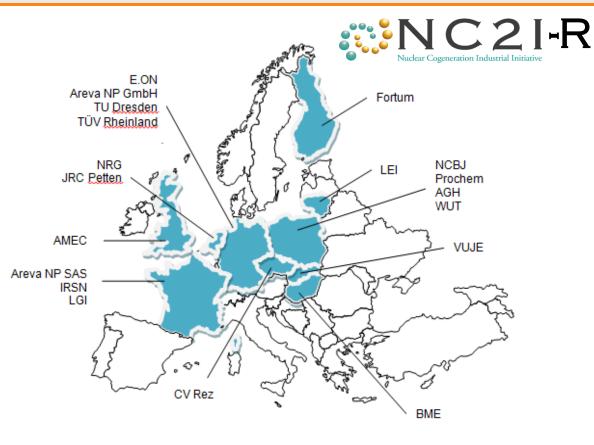
NC2I organised two projects addressing those questions:

Qth European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

Nuclear Cogeneration Industrial Initiative – Research project

Partners from Europe + NWU, South Africa + FZJ, Germany

Coordinated by National Centre for Nuclear Research (NCBJ), Poland


Budget: 1 835 000 €

Coordination and support activities only

Duration: 24 months

Launched: October 2013

NC2I-R Work Packages

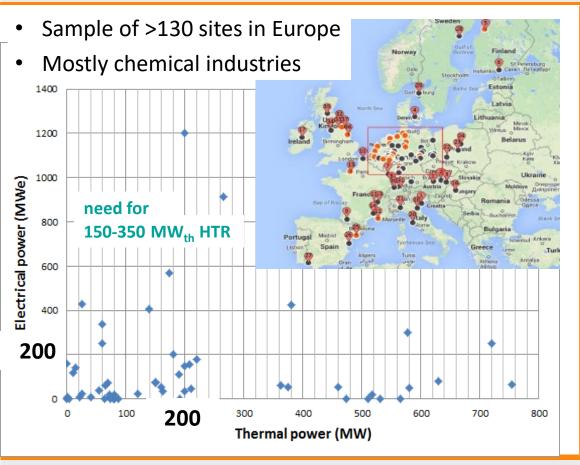
WP1 (NCBJ)

Analysis of perspectives of NC2I, including convertion to a legal entity. Finding an optimum cooperation form for the 1st HTGR design & construction

WP2 (JRC)

A « map»of European institutions having experience and facilities useful for practical implementation of nuclear industrial cogeneration

WP3 (IRSN)


Safety and licensing issues, including: mapping the experience gained so far, suggesting licnesing procedures for nuclear cogeneration units.

WP4 (E.ON)

A roadmap for a demonstrator (including data from other WPs). Study of various industrial scenarios and business models.

NC2I-R results

romania2019.eu

Case for Poland

- 13 largest chemical plants have installed today 6500MW of heat at T°= 400-550°C
- They use 200 TJ / year, equivalent to burning of >5 mln t of natural gas or oil
- 165 MW_{th} reactor output fits all the needs
- Estimated market by 2050 PL: 10-20, EU:100-200, world: 1000-2000
- Possible replacement of 200 MW_e cogeneration units in future
- Increasing interest in T=500-1000°C for H₂ production

NC2I-R results taken by Poland

Minister of Energy in July 2016 appointed

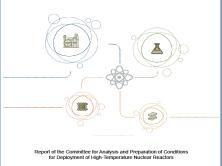
"Committee for deployment of high temperature reactors".

Chairman: G.Wrochna

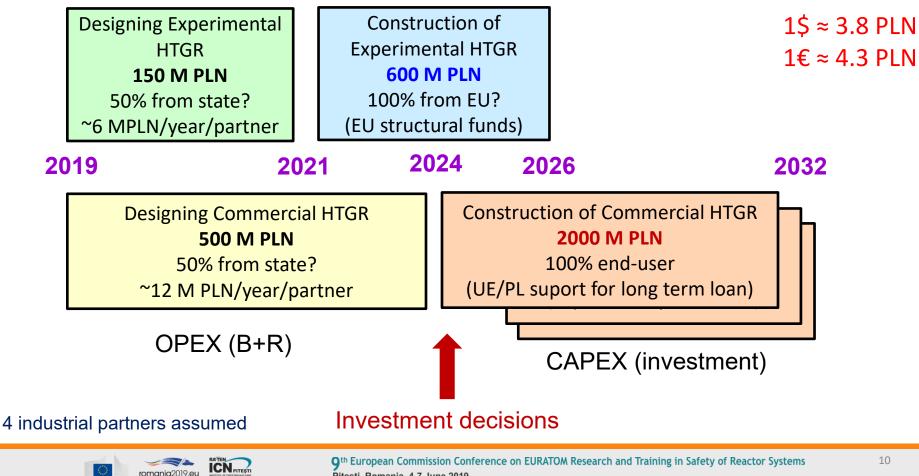
Members from:

- Nuclear R&D: NCBJ
- Engineering: Energoprojekt, Prochem
- End-users: Azoty, Orlen, Enea, Tauron, KGHM
- Associates: PAA (regulator), NCBR (R&D funding agency), PKO BP (bank)

Report published January 2018: tiny.cc/htr-pl


Minister of Energy has given a green light to implement the conclusions.

18 MPLN (~4M€) for GOSPOSTRTEG project to prepare legal, licensing & TSO framework



Possibilities for deployment of high-temperature nuclear reactors in Poland

HTGR deployment plan in Poland

Pitesti, Romania, 4-7 June 2019

Support for GEMINI initiative

Partnership of EU NC2I & US NGNP Industrial Aliance + JAEA Japan + KAERI Korea

Coordinated by National Centre for Nuclear Research (NCBJ), Poland

Budget: ~4 000 000 €

Duration: 36 months

Launched: Sept. 2017

www.gemini-initiative.com

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

GEMINI+ strategic objectives

A nuclear solution to address Europe's energy objectives (SET-Plan): clean energy for Europe, safe and efficient use of nuclear energy, secure Europe's energy supply, industrial jobs in Europe

WP1 – safety

A licensing framework for the development of a new nuclear cogeneration modular HTGR, addressing recent safety requirements (EU nuclear safety directives etc.)

WP3 – innovations

A safe nuclear HTGR system compliant with the highest safety standards, able to provide energy to citizens and industry at a competitive cost.

WP2- conceptual design

A reference HTGR configuration acceptable for licensing both in Europe and in the USA, with a future objective to develop this technology in other countries.

WP4 – deployment

A plan for an industrial demonstration: acceptable site, appropriate funding and business schemes, industrial and technological readiness, ensuring supply chain for components, spent fuel management...

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

Innovative safety approach:

- Explore unique HTGR safety features to reduce the cost
- Address the safety of the coupling reactor / industrial processes

Breaking economy of the scale:

- Cogeneration (~80% use of energy)
- Large market (PL: 10-20, EU: 100-200, world >1000)
- SMR: factory fabrication of sub-systems with fast assembling on site

Universality:

Same design for different applications

- Steam for chemical factory
- Cogeneration: turbines + various heat applications (district heating, industry)
- Potential for CO2 free hydrogen production

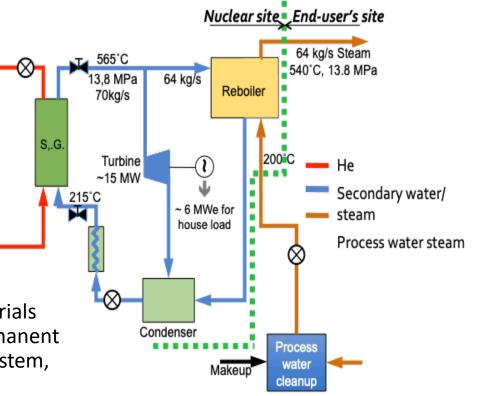
Separation from the user installations:

• No influence of user installations on the reactor

Design basis of GEMINI+ system: a flexible nuclear boiler

320°C

Reactor


750°C

6 MPa

81,5kg/s

- Delivering only steam: the uses of steam (in industrial processes and/or in electricity generation) are outside of the nuclear system.
- Can be plugged into an existing industrial steam distribution network, substituting a fossil-fired boiler without any change in the existing infrastructure.
- With simple, robust and **fully passive safety** based on intrinsic properties of the reactor materials (conduction, radiative heat transfer) and on permanent natural circulation in the sole dedicated safety system, the Reactor Cavity Cooling System.
- All sub-systems (including the vessel) sufficiently compact to be transportable by road.

GEMINI+ follow-up

NC2I / Gemini+ consortium is preparing a proposal for the new Euratom call with the objective of facilitating the deployment of the nuclear industrial cogeneration system developed in GEMINI+ by

- strengthening its licensing acceptability by addressing a few issues (identified in GEMINI+) that need further R&D work + to comfort its safety demonstration;
- enhancing its attractiveness for industry by making the service it can offer more global, complementing steam supply by safe, CO₂ free, hydrogen supply;
- supporting its political and societal acceptability by strengthening its proliferation-resistant features, developing cores allowing to destroy plutonium and minor actinides or improving the long-term sustainability of nuclear energy (thorium cycle).

More info on NC2I-R & GEMINI+: www.nc2i.eu www.gemini-initiative.com

