

Review of Euratom projects on design, safety assessment, R&D and licensing for ESNII/Gen-IV fast neutron systems

K. Mikityuk (PSI), L. Ammirabile (JRC), M. Forni (ENEA), J. Jagielski (NCBJ), N. Girault (IRSN), A. Horvath (MTA EK), J.-L. Kloosterman (TU DELFT), M. Tarantino (ENEA), A. Vasile (CEA),

Introduction

European Sustainable Nuclear Industrial Initiative (ESNII) considers:

- Reference solution: Sodium Fast Reactor ASTRID;
- 1st alternative: Lead-cooled Fast Reactor ALFRED supported by LBE facility MYRRHA;
- 2nd alternative: Gas-cooled Fast Reactor ALLEGRO.

In addition:

- Gen-IV Molten Salt Fast Reactor **MSFR** (mentioned in SRA Annex as an attractive long-term option);.
- Gen-IV European Sodium Fast Reactor **ESFR** and Swedish Advanced Lead Reactor **SEALER**.

Since late 2011 EU framework programs supported **nine projects** on these systems.

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

Outlook

- Introduction
- 9 EU projects: fact sheet; main goals; selected results
- Summary

Name: Proposal for a harmonized European methodology for the safety assessment of innovative reactors with fast neutron spectrum planned to be built in Europe

omania2019.eu

1. SARGEN_IV: fact sheet

Domains: 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2011 R&D Budget (MEUR) - Safety Partners: 22 Licensing Countries: 13 Total budget EU contribution Coordinator: IRSN **ESFR ASTRID SEALER** ALFRED **MYRRHA** ALLEGRO **MSFR** Qth European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems

Pitesti, Romania, 4-7 June 2019

1. SARGEN_IV: main goals

- Identify critical safety features of selected Generation-IV concepts, relying on the outcomes from existing FP7 projects.
- Develop and provide safety assessment methodology relying on legacy from international organizations, national practices, etc.
- Identify open issues in safety area to provide a roadmap and preliminary deployment plan for fast reactor safety-related R&D.

1. SARGEN_IV: selected results

- Safety issues identified for ESNII systems.
- List of initiating events identified and categorised according to their occurrence frequency.
- Commonly agreed methodology for safety assessment of ESNII systems developed.

2. SILER: fact sheet

Name: Seismic-Initiated Events Risk Mitigation in Lead-cooled Reactors

Partners: 18 Countries: 9 Coordinator: ENEA

MSFR

2. SILER: main goal

 Develop and experimentally qualify seismic isolators for lead-cooled reactors (but applicable to any other nuclear plant).

2. SILER: selected results

- Two isolators for ELSY and MYRRHA (High Damping Rubber Bearings and Lead Rubber Bearings, respectively) designed, manufactured and tested in different sizes up to the full scale.
- Prototype subjected to 3D dynamic tests under the real service loads up to failure.
- Cost-benefit analysis of seismic isolation adoption conducted.

Full scale pipeline expansion joint during seismic tests at the ELSA laboratory of the JRC of Ispra

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

3. ALLIANCE: fact sheet

Name: Preparation of ALLEGRO – Implementing Advanced Nuclear Fuel Cycle in Central Europe

Pitesti, Romania, 4-7 June 2019

omania2019.eu

3. ALLIANCE: main goal

 Continue elaboration of basic documents needed for high level decisions and licensing of ALLEGRO Gas-cooled Fast Reactor demonstrator.

3. ALLIANCE: selected results

- New strategy for developing ALLEGRO reactor prepared and accepted by partners.
- New systematic Roadmap prepared to cover all design, safety and experimental aspects.
- Different governance models for ALLEGRO implementation discussed.

4. VINCO: fact sheet

Name: Visegrad Initiative for Nuclear COoperation

4. VINCO: main goals

- Develop principles of cooperation and rules of access to existing and planned infrastructure.
- Identify specific objectives of R&D activities in cooperating countries.
- Describe and analyze existing research, training and educational equipment and capabilities.
- Determine investment priorities in cooperating countries.
- Set up joint research, educational and training projects.

- Possible international cooperation schemes in V4 countries identified
- Neutronic and thermal-hydraulic benchmarks conducted.
- School, workshops and exchange visits organized.

Schematic drawing of the ALLEGRO Reactor (courtesy of Petr Darilek, VUJE)

5. JASMIN: fact sheet

Name: Joint Advanced Severe accidents Modelling and Integration for Na-cooled fast neutron reactors

Pitesti, Romania, 4-7 June 2019

omania2019.eu

5. JASMIN: main goal

 Enhance current capability of analysis of severe accidents in SFRs by developing a new European simulation code, ASTEC-Na from existing ASTEC platform developed by IRSN and GRS for LWRs

5. JASMIN: selected results

- New models for ASTEC-Na code developed, verified and validated
 - Thermal-hydraulic models.
 - Fuel thermomechanical models.
 - Fission gas behaviour models.
 - Point kinetics models.
 - Sodium pool fires and aerosolisation models.

ASTEC-Na calculation scheme and modelling capabilities

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

6. ESNII Plus: fact sheet

Name: Preparing ESNII for HORIZON 2020

6. ESNII Plus: main goals

- Develop a broad strategic approach to advanced fission systems in Europe in support of European Sustainable Industrial Initiative (ESNII) within the SET-Plan
- Do R&D in support to the ESNII demonstrators

6. ESNII Plus: selected results

- Coordination between ESNII, EC and national programs analysed and topics for joint programming identified.
- Challenges for future financial and legal models for ESNII identified.
- Irradiation infrastructure in Europe reviewed.
- Siting and licensing requirements for the new generation of fast reactors analysed.
- Existing supply chain reviewed to support deployment strategy for fast reactors.
- Potential of small modular and cogeneration fast reactors investigated.
- Benchmarks on core physics for ESNII systems conducted.
- MOX fuel properties measurements implemented.
- R&D on seismic isolators and selected instrumentation performed.

7. SESAME: fact sheet

Name: Thermal Hydraulics Simulations and Experiments for the Safety Assessment of Metal Cooled Reactors

SESAME

Pitesti, Romania, 4-7 June 2019

omania2019.eu

7. SESAME: main goals

- Develop and validate advanced numerical approaches for design and safety evaluation of advanced reactors.
- Achieve new or extended validation base by creation of new reference data.
- Establish best practice guidelines,
 Verification & Validation methodologies, and uncertainty quantification methods for liquid metal fast reactor thermal hydraulics.

7. SESAME: selected results

- Validation base was extended for turbulent heat transfer in mixed and natural convection regimes and for geometrically complex cases.
- Combination of experimental data and high fidelity numerical simulations was set-up for wire wrapped fuel assemblies.
- Liquid metal experiments for pool thermal hydraulics performed at different scales.
- Validation data were provided in loop scale for validation of system TH codes.
- Lectures and workshop organized.
- Textbook published.

CFD Model of ALFRED Primary System. (Courtesy of CRS4, SESAME Task 3.1.2)

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

8. SAMOFAR: fact sheet

Name: A Paradigm Shift in Reactor Safety with the Molten Salt Fast Reactor

Pitesti, Romania, 4-7 June 2019

omania2019.eu

8. SAMOFAR: main goals

- Deliver experimental proof of concept of unique safety features of MSFR.
- Provide safety assessment of MSFR for both reactor and chemical plant.
- Update conceptual design of MSFR.
- Create momentum among key stakeholders.

8. SAMOFAR: selected results

- MSFR design including the emergency draining system updated and assessed.
- Plant simulator developed and used to define reactor control strategies and procedures.
- Risk assessment methodology developed based on ISAM.
- Setup constructed to study actinides in molten fluorides and to synthesize actinide fluorides.
- Experiments on fuel salt vaporization revealed retention properties at high temperature.
- Test facility made to measure viscosity of salts.
- DYNASTY and SWATH facilities prepared for TH experiments.
- Transient calculations performed.
- Fuel salt processing scheme updated.
- Thermochemical calculations performed.
- Summer school organized.

9. ESFR-SMART: fact sheet

Name: European Sodium Fast Reactor Safety Measures Assessment and **Research** Tools

Pitesti, Romania, 4-7 June 2019

omania2019.eu

R&D areas:

- TH & CFD
- Neutronics
- Fuel

ESFR

- **Multiphysics**

Partners: 19 Countries: 9 Coordinator: PSI

MSFR

28

9. ESFR-SMART: main goals

- Produce new experimental data to support calibration and validation of computational tools for each DiD level.
- Test and qualify new instrumentations to support their utilization in reactor protection system.
- Perform further calibration and validation of computational tools for each DiD level to support safety assessments of Gen-IV SFRs.
- Select, implement and assess new safety measures for commercial-size ESFR.
- Strengthen and link together new networks (sodium facilities and students).

9. ESFR-SMART: selected results

- A set of new safety measures for ESFR was proposed by the end of the 1st year.
- New low-void core performance during base irradiation was evaluated.
- Benchmarking of neutronics, TH, fuel performance and severe accident codes started.
- New experiments launched (CHUG, HAnSOLO, ECFM).

- 1: Insulation with steel liner
- 2: Core catcher
- 3: Core
- 4: Primary pump
- 5: Above-core structure
- 6: Pit cooling system (DHRS-3)
- 7: Main vessel 8: Strongback 9: IHX 10: Reactor pit 11: Secondary sodium tank 12: Steam generator

- 13: Window for air circulation (DHRS-1)
- 14: Sodium-air HX (DHRS-1) 15: Air chimney (DHRS-1)
- 16: Secondary pump
- 17: Casing of SGs (DHRS-2)
- 18: Window for air circulation (DHRS-2)

Summary

- 9 EU project since late 2011
- 7 ESNII/Gen-IV fast neutron systems
- 45 MEUR of total budget including 28 MEUR of Euratom contribution.
- 64 organizations from 20 countries
- Design, R&D, safety and licensing aspects
- R&D in
 - TH and CFD
 - Fuel
 - Seismic
 - Multiphysics

romania2019.eu

Thank you for your attention

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019