

4-7 June 2019 Pitesti, Romania

Spent fuel dissolution results from completed project REDUPP and ongoing project Disco

L.Z. EVINS, L. DURO, A. VALLS, C. CORKHILL, E. MYLLYKYLÄ, I. FARNAN, D. BOSBACH, V. METZ, P. MALDONADO

Introduction Spent Nuclear Fuel dissolution

Introduction REDUPP

- April 2011 April 2014
- FP7 Collaborative Project

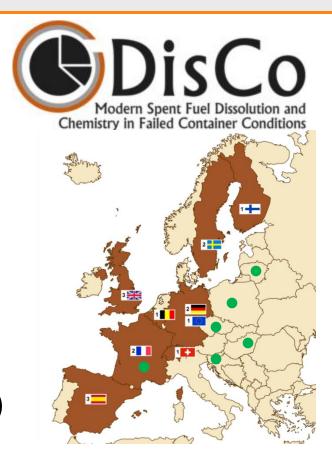
 Reduce remaining uncertainty in the dissolution rate of spent uranium oxide fuel + train young scientists for future needs in our field

Fluorite structure : CaF₂, CeO₂, ThO₂, UO₂

Sample surface changes during dissolution, effects of "high-energy sites"

Effects of natural ground water on dissolution of alpha-doped UO₂

Experiments & Ab Initio modelling



Introduction DisCo

- June 2017 May 2021
- Horizon 2020 Collaborative Project
- Improve understanding of spent fuel matrix dissolution in repository conditions
- Test modern nuclear fuel types (doped & MOX) for comparison with conventional fuels:
 - Both real spent fuel and synthesized model materials
- Disseminate the new knowledge: reach a wider community through training and mobility measures
- Associated Group: CV Rez (CH), LEI (LT),
 MTA EK (HU), ICHTJ (PL), EIMV (SI), Subatech(FR)

Methods REDUPP

Experimental

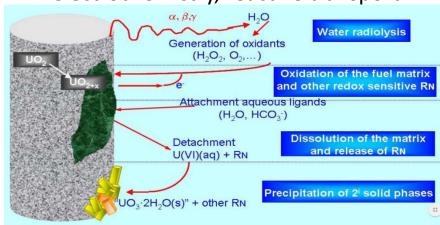
- Synthesis of spent nuclear fuel analogues: fluorite structure, grain size, porosity, defects ...
- Dissolution in various conditions & aqueous phases analyses
- Post-dissolution analyses of the solid phases

Back-Scattered Electron (BSE) image of ThO₂ fragment, 4 weeks leaching

Modelling

- Density Functional Theory in firstprinciples (Ab Initio) modelling (L(S)DA & DFT+U)
- Modelling a surface: 6-8 layers
- Stepped surfaces on fluorite materials: terraces and steps
- Ab initio molecular dynamics (AIMD)

 and atomistic thermodynamics
 simulations for different temperatures
 water reactions on UO₂ surfaces

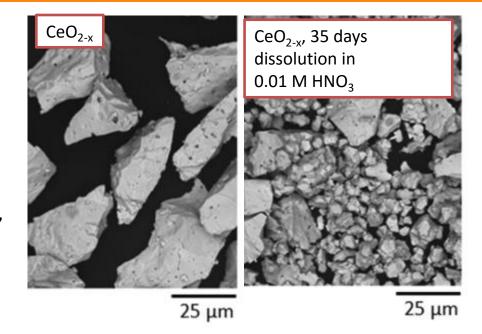

Methods DisCo

Experimental

- Real Spent Fuel dissolution experiments: used MOX, Cr-doped, Cr/Al-doped, and standard fuel.
- Model materials: UO₂ with and without dopants (Cr, Al, Gd), with and without alphaemitter (²³³U, ²³⁸Pu)
- Dissolution experiments
 - 1) oxidizing, SNF & air (as reference, SNF & Ar, Model materials & H₂O₂
 - 2) inert atmosphere & Fe (reducing)
 - 3) under Hydrogen (reducing)
- Post-dissolution analyses

Modelling

- Improve existing models through inclusion of Fe corrosion, hydrogen effect & metallic particles
- Thermodynamics, chemical kinetics, electrochemistry, reactive transport...



Results REDUPP CeO₂

Role of defects and grain boundaries

- Initial fast dissolution is focused on grain boundaries: misorientation angles & crystallographic control.
- Intrinsic defects: oxygen vacancies replaced by oxygen during dissolution, Ce³⁺ in CeO_{2-x} rapidly oxidized to Ce⁴⁺
- Lattice strain and enhanced oxygen mobility, created by the removal of oxygen vacancies, resulted in the disintegration of particles, preferentially along grain boundaries

Corkhill et al 2014. Contribution of Energetically Reactive Surface Features to the Dissolution of CeO2 and ThO2 Analogues for Spent Nuclear Fuel Microstructures ACS Appl. Mater. Interfaces, 6, 15, 12279-12289

Corkhill et al, 2016. Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO2, a UO2 Fuel Analogue. ACS Applied materials &Interfaces 8, 16, 10562-10571

Results REDUPP Ab Initio

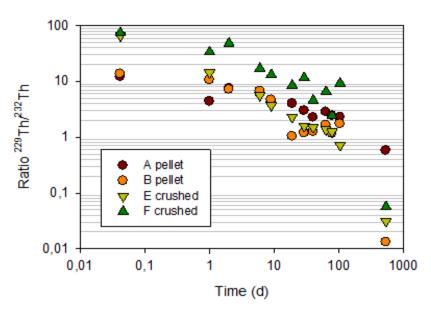
Water on UO₂ surfaces

- Ab Initio Molecular Dynamics combined with atomistic thermodynamics
- Dissociative adsorption: hydroxylated surface stable at environmental conditions
- More reactive surfaces with steps and terraces: reaction accompanied by a modification of the step morphology.

Maldonado et al, 2014. Ab initio atomistic thermodynamics of water reacting with uranium dioxide surfaces. The Journal of Physical Chemisty C 118, 8491–8500.

3 molecule water adsorption on the (221) surface of UO₂. **Terrace+Step** 15 10 Step $n\,(P_{\rm H_2O}\,/\,P^0)$ Free Water Molecule -10 -15 300 1200 1500 1800 2100 2400

T (**K**)


Results REDUPP ThO₂

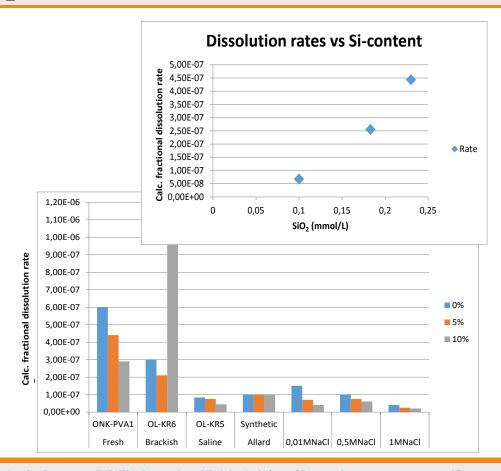
Insight from isotope exchange

- Isotopic tracer (²²⁹Th) to track surface processes: Continued isotopic exchange in spite of apparent chemical equilibrium
- Continuous change of isotopic ratio
 ²²⁹Th/²³²Th: precipitation/dissolution
 reactions are still ongoing at the interface
 despite apparent chemical equilibrium
- Alpha-spectrometry: surface layer, maximum 0,1 μm thick containing ²²⁹Th and daughter nuclides of ²²⁹Th and ²³²Th decay series.

Myllykylä et al 2017 Dissolution of ThO₂: study of dissolution process with initial ²²⁹Th spike. Journal of Radioanalytical and Nuclear Chemistry 311, 225-235.

Continuous change in isotopic ratio

Myllykylä et al 2017, Direct alpha spectrometry for analysing leached ThO₂ pellets. Journal of Nuclear Materials, 493,2017, 69-76. doi.org/10.1016/j.jnucmat.2017.06.003

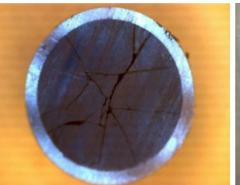

Results REDUPP UO₂ in natural groundwater

Effects of natural groundwater

- 3 ground waters with different salinity
- Experiments used isotopic exchange:
 Rates are calculated using change in isotopic ratio
- Calculated dissolution rates highest in fresh groundwater
- This has highest silica and carbonate content
- Precipitates were found with U and Si

Ollila et al 2013. Dissolution rate of alpha-doped $\rm UO_2$ in natural groundwater. Journal of NuclearMaterials 442 (2013) 320–325

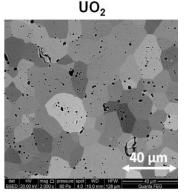
Evins L Z, Juhola P, Vähänen M, 2014. REDUPP. Final report. Posiva Working Report 2014-12, Posiva Oy, Finland.



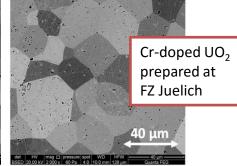
Results DisCo WP2: Sample preparation

Spent nuclear fuel samples

- SNF samples prepared in Hot Cells at Studsvik , KIT INE, JRC & NNL
- Samples for dissolution prepared either as segments of a fuel rod, or as fragments with the cladding removed


Spent nuclear fuel (MOX) prepared at KIT INE

Model materials


UO₂ (as reference), UO₂+Gd,
 UO₂+Cr, UO₂+Cr+Al, (U,Th)O₂.

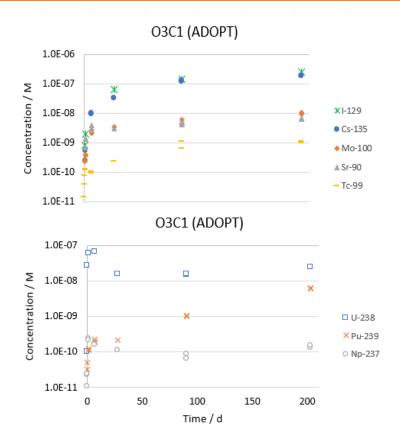
+(*U,Pu*)*O*₂ & ²³³U-doped UO₂ already available

 Sample synthesis procedures have been optimized and samples characterized

<D> = 12.1 μ m

<D> = 19.4 μ m

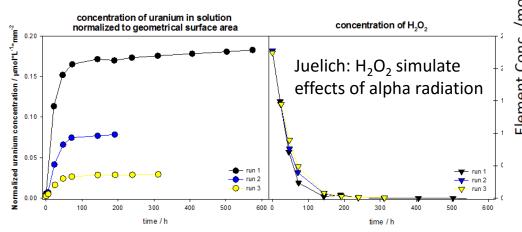
UO₂+Cr (wet coating)

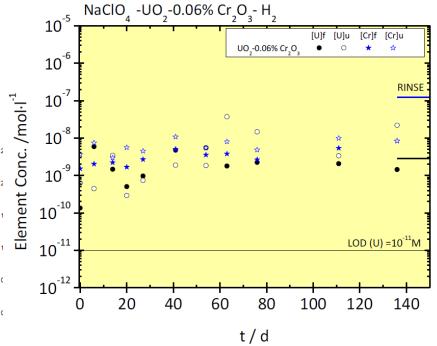


Results DisCo WP3: Spent fuel dissolution

1st leaching results available

- Next year data will be available for inclusion in the chemical models (WP5)
- Tests run in reducing conditions: H₂ or Mix of Ar/H₂, plus reference test in air
- Studsvik Example given here

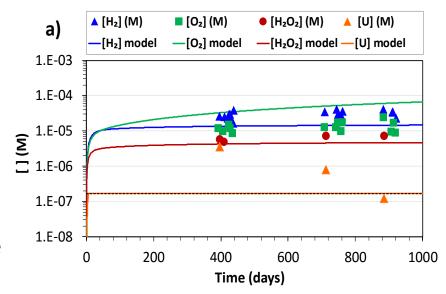



Results DisCo WP4: Model materials dissolution

1st leaching results available

- Next year data will be available for inclusion in the chemical models (WP5)
- Some preliminary results given here from Juelich and Ciemat

Ciemat example: Cr-doped UO₂ in H₂ autoclave. [U] ~solubility limit


Results DisCo WP5: Chemical Modelling

4 modelling approaches : Initial models available - further development ongoing

- Thermodynamic calculations of ideal solid solution : Cr (III) in SNF
- iCP: interface coupling COMSOL Multiphysics and PhreeqC. Chemical kinetics and reactive transport
- Unirradiated MOX in Fe-containing Callovo-Oxfordian water using CHESS-HYTEC: kinetics of reactions at pellet surface
- Electrochemical, mixed-potential modelling developed to address oxidative dissolution in storage ponds

Example Amphos 21:

Reactions involving O_2 , H_2 and H_2O_2 occurring at the spent fuel surface

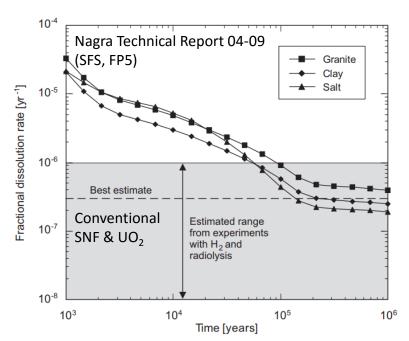
DisCo: ongoing and planned work

Experimental matrix (May 2019)

Reducing (H2, Ar/N2/H2 mix, or anoxic with corroding Fe)				
Water type:	BW	YCWCa	Natural GW + Fe	synthetic Cox+Fe
Solid				
UO2 ref	Started	Started	Planned	
UO2+Gd	Started	Started		
UO2+Cr	Started	Started	Planned	
UO2+Al				
UO2+Cr+Al	Started	Started		
(U,Th)O2	Planned	Planned		Planned
UO2 ref - 238Pu/233U	Started	Started	Started	
UO2+Cr- 238 Pu	Planned	Planned	Planned	
(Pu,U)O2				Started
spent fuel UO2 (BU 57,1 &?60?)	Started	Planned		
spent fuel Cr&Al-UO2 (BU 59.1)	Started			
spent fuel Cr-UO2 (BU 58)	Planned			
MOX (BU 38)	Started			
Oxidizing/Anoxic(Ar), H2O2, or Air				
Water type:	BW	YCWCa	Natural GW + Fe	synthetic Cox+Fe
Solid				
UO2 ref +H2O2	Started	Started		
UO2+Cr +H2O2	Started	Started		
UOX (60 (local 73)), Air		Started		
MOX (BU 56&48):, Ar	Planned			

Model developments

- Thermodynamics of calibrated non-ideal solid solution for Cr-doped UO_{2+y}: inclusion of metallic particles, "grey phase", lanthanides, Pu and the minor actinides.
- Including heterogeneity & porosity of spent fuel matrix; Including changes in porosity due to secondary phase precipitation
- MOX model adjustment to schematic disposal cell configuration: assess the effect of nearfield environment (steel canister embedded in the COx host-rock.)
- Developments to address uncertainties in Mixed-Potential model regarding assumed irreversibility of surface reactions (and more)
- DisCo data reported no later than May 2020 will be included in all modelling activities



Discussion

What we know

Comparison of fractional dissolution rates calculated using the MAM with the range of values estimated from experimental studies of dissolution of alpha-doped UO_2 and spent fuel in the presence of H_2

Knowledge gaps

- How do we model the "hydrogen effect" at the fuelwater interface? (DisCo)
- How do different elements in the solid affect the dissolution – eg Cr? Will they interfere with the interfacial electron transfer reactions?(DiscO)
- How do water chemistry, e.g. pH, different complexing agents, affect dissolution? (DisCo)
- Is there a "hydrogen effect" without metallic particles? Iron and Fe²⁺(aq) is indicated to supress oxidative dissolution (DisCo) but there is also some evidence that hydrogen is effective in this situation.
- What is the driving force and mechanism behind the observed continued recrystallization and isotope exchange at apparent chemical equilibrium?
- What secondary precipitates can form (UO₂ (am), coffinite (USiO₄?), and how does this affect radionuclide release?

Summary

REDUPP

- Completed project (2014)
- Several papers published after project completion
- Importance of grain boundaries and defects during initial stage of dissolution
- Disappearing "High-Energy sites" surface adjusts to a lower energy state
- Ab Initio model of hydroxylated stepped surface: atomic scale view of surface modification
- Calculated dissolution rates faster in fresh water with high Si and carbonate

DisCo

- Ongoing project (2017-2021)
- Spent nuclear fuel and model materials studied
- Effect of additives in nuclear fuel (Cr, Cr+Al, Gd, Th, Pu) on dissolution of spent nuclear fuel.
- Experiments are ongoing preliminary dissolution data available
- Different modelling approaches developed
- Communication and training to include Associate Group: Knowledge transfer

Thank you for listening!

Acknowledgements: all project contributors

Petra Christensen, Olga Riba, Theo Cordara, Hannah Smith, Kaija Ollila, Tiina Lavonen, Ernesto Gonzales-Robles, Michel Herm, Joaquin Cobos, Nieves Rodriguez, Philip Kegler, Evgeny Alekseev, Aleksej Popel, Olivia Roth, Alexandre Barreiro Fidalgo, Anders Puranen, Karel Lemmens, Thierry Mennecart, Christelle Cachoir, Luis Iglesias, Frederic Clarens, Joan de Pablo, Ignasi Casas, Christophe Jegou, Valentin Kerleguer, David Hambley, Chris Maher, Enzo Curti, Dmitrii Kulik, Laurent de Windt, Paul Carbol, Daniel Serrano-Purroy, Detlef Wegen, Peter Oppenneer (in REDUPP)...and more!

cea

REDUPP:

The research leading to these results has received funding from the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement No. 269903

DisCo:

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 755443

