

NSIDER

NUCLEAR SITE INTEGRATED CHARACTERIZATION FOR RADIOACTIVE WASTE MINIMIZATION: THE INSIDER PROJECT

D. Roudil¹, P. Peerani², S. Boden³, B. Russell⁴, M. Herranz⁵, M. Crozet¹, L. Aldave de la Heras²,

¹ CEA Nuclear Energy division, ² European Commission Joint Research Centre, ³ SCK-CEN, ⁴ NPL ⁵ UPV/EHU

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 755554.

CONTENT

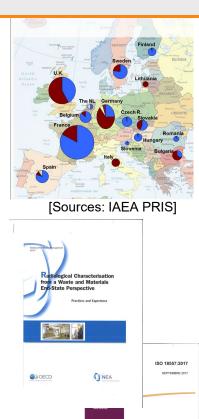
□ Context and objectives of the INSIDER project

Methodology

Developments and implementation

Preliminary benchmark results

Perspectives and conclusions



CONTEXT

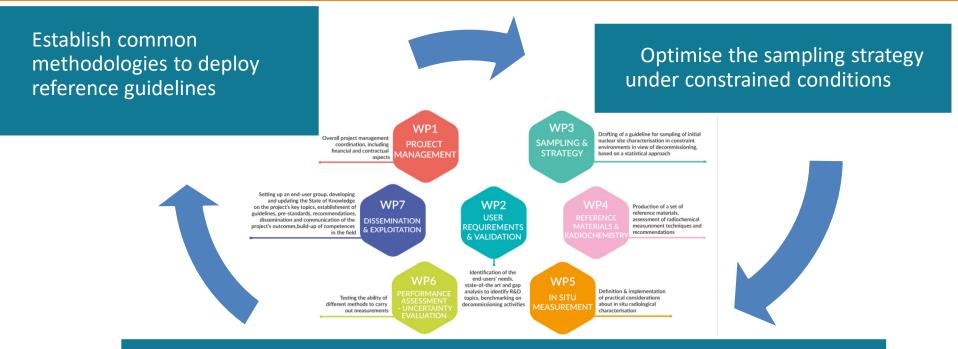
- A global technical, societal, environmental and economic challenge for the 21st century
 - By 2050, more than the half of today's 400 GW nuclear capacity around the world is scheduled to be shut down for decommissioning
 - Nuclear materials represent a wide variety of matrices and contaminants
- An accurate fit for purpose radiological and chemical characterisation of facilities and sites is required for dismantling and classification of contaminated materials.
 - Physical, radiological and non radiological characterisation prior to dismantling is a key element for all D&D projects (OECD, NEA, IAEA):
 - Scenario definition
 - Cost estimation
 - Radioactive waste production and categorisation
- Smart applications and waste management routes must be available to minimise the amount of radioactive waste and related potential hazard.
 - Need for reliable data to explore different sustainable management routes for contaminated materials: reuse, recycle...

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

INSIDER project

Improved Nuclear Site characterisation for waste minimisation in D&D operations under constrained EnviRonment

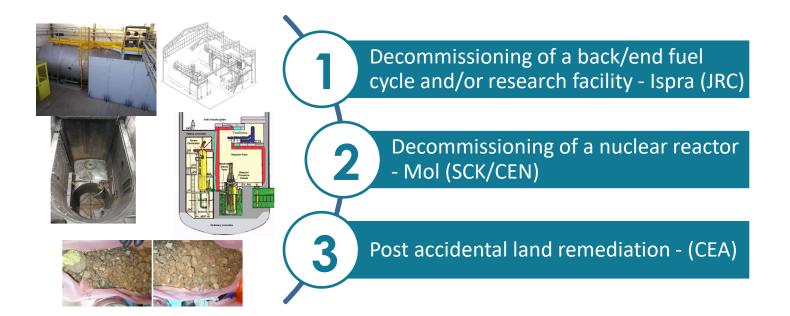
- A EU-funded Horizon 2020 project
- "Research and innovation on the overall management of radioactive waste other than geological disposal"
- "Management of <u>non-standard waste</u> including D&D waste"
- □ 4-year project: launched in June 2017
- What INSIDER will achieve
 - To develop and validate a new and improved integrated characterisation methodology and strategy during nuclear decommissionning and dismantling operations (D&D) of nuclear power plants, post accidental land remediation or nuclear facilities under constrained environments.



Results will be validated through 3 case studies

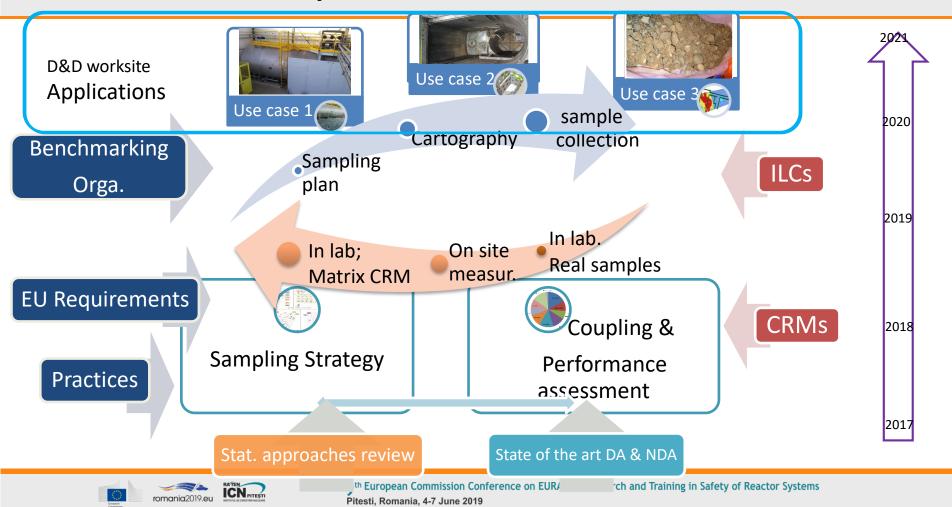
Key objectives- Project organisation

Coupling sampling/measurement:


Performance assessement of avalaible measurement techniques

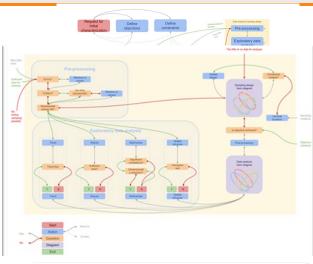
9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

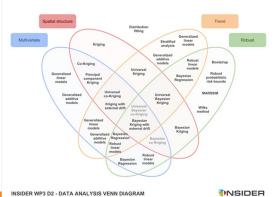
Three case studies


Apply the methodologies to real worksites under decommissioning

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019 6

Implementation: 3 main areas



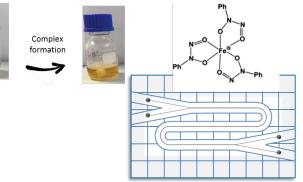

Global Statistical approach

- ❑ Support to sampling strategy and sampling design definition
- Waste-led approach
- Coupling sampling and characterization methods
 - gathering all possible data

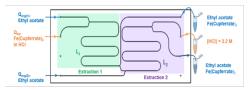
Data analysis associated to sampling design

- Variables of interest and statistical indicators
- Data processing (pre and post analysis):
- Univariate or Multivariate data analysis
- Presence of Spatial structure
- Presence of Spatial trends
- Requirement for Robust methods

Analytical development status


D&D Matrix Reference materials

- Heavy concrete: *Ba-133, Co-60, Eu-152,154*
 - Homogenised doped real samples
- Effluent solution:
 - Doped solution


Development of liquid-liquid micro-extraction

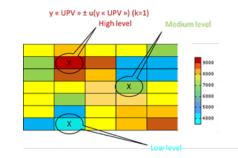
- Microsystem-based analytical protocol for the extraction and purification of a radionuclide (⁵⁵Fe) prior to its analysis
 - Microchannel : 100 μm width; 40 μm depth; 8, 12, or 20 cm lengths
 - Ethyl acetate as the organic phase,
 - Cupferron in aqueous phase
 - two stage extraction
- Measurements of Fe extraction yields :
 - □ 45% in 1 sec in single-stage microsystem (protocol 1)
 - 60% in 1.35 sec in double-stage microsystem (protocol 2)

Main contaminants	Activity concentration range (Bq/g)
Ni-63	1-10
Sr-90	1-100
Pu-238	0.1-10
Pu-239	0.1-10
Am-241	1-10
Co-60	0.1-10
Cs-137	1-200
Fe-55	0.1-5
Pu-241	1-50
U-238	0.1-10

Sinale-stage extraction chip

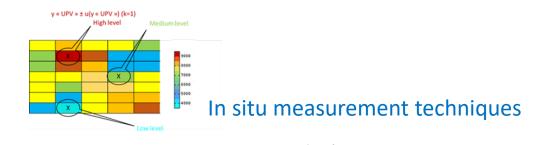
Two-stage extraction chip

S. RASSOU et al 2019 submitted

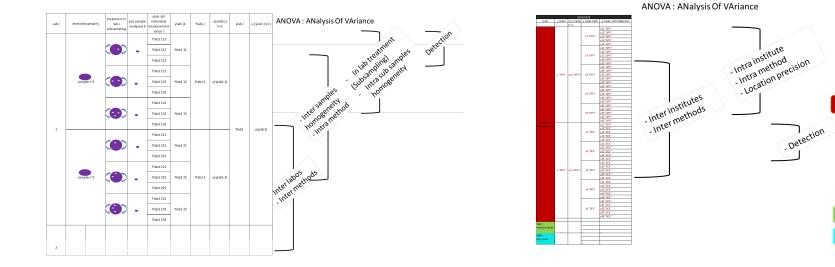

- Test the ability of different techniques/methods (proficiency test) to carry out measurements
- **Estimate the measurement (in lab or in situ) uncertainty** on synthetic and real samples
- Try to establish a complete uncertainty budget including every step of the INSIDER methodology (geostat & measurement)

Interlaboratory comparisons organisation on

- Reference samples : proficiency test
 - In Lab DA and NDA


WP6

- Reference materials produced within the project by WP4
- Real samples : benchmarking
 - Organize benchmark tests for <u>in situ measurements(NDA)</u>
 - in lab analysis (DA and NDA)
 - Homegenised real samples collected

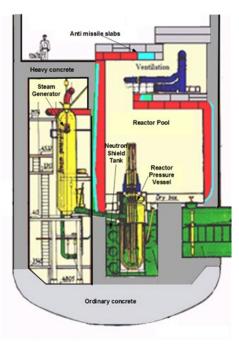


Performance assessment : statistical approaches

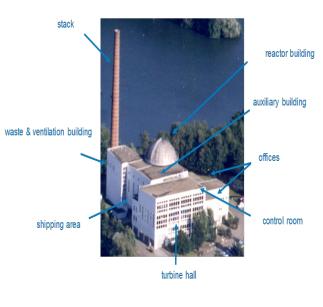
In Lab DA and NDA methods

WP6

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems


Pitesti, Romania, 4-7 June 2019

Interlevels

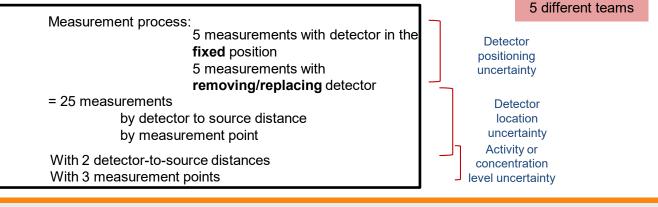

Х

On site benchmarking: Use case 2 (NPP)

BR 3 Reactor biological shield

WP2

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019


In situ analysis performance assessment

□<u>in situ analysis</u> :

NP5

 Sampling strategy: interest of small data set
Improvement through performance assessment: measurand = (X ± U) unit Dose rate Total gamma
¹³³Ba, ¹⁵²Eu, ¹⁵⁴Eu, ⁶⁰Co (γ spectro)

Validated analytical method: Accuracy = Trueness + precision

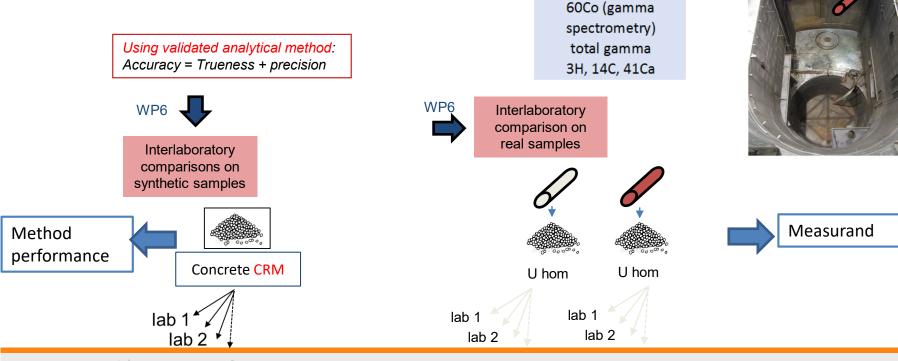
9th European Commission Conference on EURATOM Research and Training in Safety or neucor systems Pitesti, Romania, 4-7 June 2019

in situ inter-teams

comparisons :

Interlaboratory comparison contribution

In lab. analysis :


WP6

WP4

- □ Sampling strategy: reduced number of samples
- \Box measurand = (X ± U) unit

ICN PITESTI

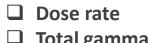
romania2019.eu

133Ba, 152Eu, 154Eu,

WP3

WP5

WP2


Future benchmarking on use case 1

Liquid effluent tank storage at JRC

Main RN to measure:

¹⁴C, ⁴¹Ca, ⁶³Ni, ⁷⁹Se, ⁹⁰Sr, ⁹³Zr, ⁹⁹Tc, ¹⁰⁷Pd, ¹⁴⁷Pm, ¹⁵¹Sm e ²⁴¹Pu, ⁵⁵Fe, ⁵⁹Ni, ⁹³Mo, ¹²⁹I, ⁶⁰Co, ⁹⁴Nb, ¹³⁴Cs, ¹³⁷Cs, ¹⁵²Eu, ¹⁵⁴Eu, ²⁴¹Am, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu...

- **Total gamma**
- Gamma spectrometry

Which measurements?

- after homogenisation with stirrers in operation
 - after deposition of the solid fraction after long stop of the stirrers

9th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems Pitesti, Romania, 4-7 June 2019

INSIDER project perspectives

- □ Innovative metrological study based on a multidisciplinary network and D&D key activities
 - New D&D matrix reference materials development
 - Intercomparisons on real samples and Inter-team
 - Analytical innovation needs identification, development and implementation
 - □ Correlation and scaling factors: Improvement of accuracy estimation of traces (DTM RN)
 - Advanced integrated approach for site radiological characterisation and automation of characterization process...
 - Decommisionning operating experience

Methodological guides updated according to benchmarking feedback

- Established link with standardisation commissions (ISO) for future international standards
- □ Contribution to European learning (ELINDER)
- □ Interface with other EU initiative (SHARE, METRODECOM projects)

Potential further opening of the project

- Extension/application of the methodology and approaches : historic wastes, graphite reactors...
- Interface with digital tools: Imaging, virtual and augmented reality

9th European Commission Conference on EURATOM Research and Training in Radioactive Waste Management

4-7 June 2019 Pitesti, Romania

THANK YOU for your attention

Any questions?

Project coordinator: Danièle Roudil, CEA **Contact us:** contact@insider-h2020.eu

Visit our website: www.insider-h2020.eu

Follow us on LinkedIn and Twitter! @InsiderH2020

